If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+16a-1=0
a = 1; b = 16; c = -1;
Δ = b2-4ac
Δ = 162-4·1·(-1)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{65}}{2*1}=\frac{-16-2\sqrt{65}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{65}}{2*1}=\frac{-16+2\sqrt{65}}{2} $
| -2u+4(u+3)=-8 | | -2(1+7m)-4m=-146 | | Y2-26=-x2 | | 9(j-3)=10 | | 30+4j=82 | | 6x/5-5=1 | | X^2+10x+6=15x | | 2y+3(y-4)=7y-4(y-10) | | 12.6x+4x=9.6+8x | | -5b+24=-8(b)-(6)+6b | | -73=8+-9g | | 3(x+2)=20= | | 2(2x-5)+2x=38 | | 9d-24=12 | | 4(2y-4)=8y-16 | | √2x+15=x+2 | | 6(3x+3)-5x=-2x-3(5x+6) | | 68=4(s+7) | | -258=-6(1+7x) | | 4r+2r+4=-14+2 | | t/4-3=3 | | 3(5b+3)+1=55 | | 3x+12=-3+16 | | 2a+3a-5=180 | | 7(324+c)=3444 | | 5(w+2)=-10 | | M-5+3m=11 | | 4z=15-31 | | X=7z=8 | | -8=4x+3(x-5) | | 324+7c=3444 | | x/300=90/10 |